Site-specific and redox-controlled S-nitrosation of thioredoxin
نویسندگان
چکیده
منابع مشابه
Site-specific and redox-controlled S-nitrosation of thioredoxin.
Protein S-nitrosation on cysteine residues has emerged as an important posttranslational modification in mammalian cells. Previous studies have suggested a primary role for thioredoxin (Trx) in controlling protein S-nitrosation reactions. Human Trx contains five conserved Cys, including two redox-active catalytic Cys (Cys32 and Cys35) and three non-active-site Cys (Cys62, Cys69, and Cys73), all...
متن کاملRedox Regulatory Mechanism of Transnitrosylation by Thioredoxin*□S
Transnitrosylation and denitrosylation are emerging as key post-translational modification events in regulating both normal physiology and a wide spectrum of human diseases. Thioredoxin 1 (Trx1) is a conserved antioxidant that functions as a classic disulfide reductase. It also catalyzes the transnitrosylation or denitrosylation of caspase 3 (Casp3), underscoring its central role in determining...
متن کاملS-nitrosation of proteins
Nitric oxide (NO) is a key factor in inflammation as it regulates microvascular permeability, leukocyte adhesion and wound healing. This mini-review addresses mainly spatial and temporal requirements of NO regulatory mechanisms, with special emphasis on S-nitrosation. Endothelial nitric oxide synthase (eNOS)-derived NO induces S-nitrosation of p120 and β-catenin, particularly in response to pla...
متن کاملS-nitrosation: current concepts and new developments.
The S-nitrosation (also referred to as S-nitrosylation) of cysteine residues is an important post-translational protein modification that regulates protein function and cell signaling. The original research articles and reviews in this Forum cover important concepts in protein S-nitrosation and identify key developments and opportunities for progress in this area. Defining the mechanisms by whi...
متن کاملThioredoxin is required for S-nitrosation of procaspase-3 and the inhibition of apoptosis in Jurkat cells.
S-nitrosation is a posttranslational, oxidative addition of NO to cysteine residues of proteins that has been proposed as a cGMP-independent signaling pathway [Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Nat Rev Mol Cell Biol 6:150-166]. A paradox of S-nitrosation is that only a small set of reactive cysteines are modified in vivo despite the promiscuous reactivity NO exhibits ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2011
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.1110736108